2023届全国100所名校单元测试示范卷答案高三数学,我们目前收集并整理关于2023届全国100所名校单元测试示范卷答案高三数学得系列试题及其答案,更多全国100所名校单元测试示范卷试题及答案,请关注微信公众号:考不凡
1、2023届全国100所名校单元测试示范卷数学第一单元
2、2023届全国100所名校单元测试示范卷数学历史卷二
3、2023届全国100所名校单元检测示范卷 物理必修一答案
9.已知数列{an}的前项n和为Sn,满足Sn=n2+3n+2(n∈N+)
(1)求an;
(2)求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$的值.试题答案
分析 (1)当n≥2时,利用an=Sn-Sn-1计算,进而可得结论;
(2)通过(1)利用等差数列的求和公式,裂项可知$\frac{1}{S_n}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$,进而并项相加即得结论.
解答 解:(1)当n=1时,a1=S1=6,
当n≥2时,an=Sn-Sn-1=2n+4,
∴${a_n}=\left\{{\begin{array}{l}{6,n=1}\\{2n+4,n≥2}\end{array}}\right.$,即an=2n+4;
(2)由(1)可知$\frac{1}{S_n}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$,
$\begin{array}{l}∴\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}=({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+…({\frac{1}{n+1}-\frac{1}{n+2}})\\=\frac{1}{2}-\frac{1}{n+2}=\frac{n}{{2({n+2})}}\end{array}$
点评 本题考查数列的通项及前n项和,利用裂项相消法是解决本题的关键,注意解题方法的积累,属于中档题.
7.(由文章结尾埃尔斯的话“交作品时,我就花大价钱把美术馆的人收买了”可知,获得美术展奖项与艺术治疗法毫无关系。)
本文由 全国100所名校示范卷答案网 作者:admin1 发表,转载请注明来源!